
SQL Basics Cheat Sheet
SQL, or Structured Query Language, is a language to talk to
databases. It allows you to select specific data and to build
complex reports. Today, SQL is a universal language of data.
It is used in practically all technologies that process data.

SAMPLE DATA
COUNTRY

id name population area

1 France 66600000 640680

2 Germany 80700000 357000

...

CITY

id name country_id population rating

1 Paris 1 2243000 5

2 Berlin 2 3460000 3

...

QUERYING SINGLE TABLE
Fetch all columns from the country table:
SELECT *
FROM country;

Fetch id and name columns from the city table:
SELECT id, name
FROM city;

Fetch city names sorted by the rating column in the default
ASCending order:
SELECT name
FROM city
ORDER BY rating [ASC];

Fetch city names sorted by the rating column in the
DESCending order:
SELECT name
FROM city
ORDER BY rating DESC;

ALIASES
COLUMNS
SELECT name AS city_name
FROM city;

TABLES
SELECT co.name, ci.name
FROM city AS ci
JOIN country AS co
 ON ci.country_id = co.id;

FILTERING THE OUTPUT
COMPARISON OPERATORS
Fetch names of cities that have a rating above 3:
SELECT name
FROM city
WHERE rating > 3;

Fetch names of cities that are neither Berlin nor Madrid:
SELECT name
FROM city
WHERE name != 'Berlin'
 AND name != 'Madrid';

TEXT OPERATORS
Fetch names of cities that start with a 'P' or end with an 's':
SELECT name
FROM city
WHERE name LIKE 'P%'
 OR name LIKE '%s';

Fetch names of cities that start with any letter followed by
'ublin' (like Dublin in Ireland or Lublin in Poland):
SELECT name
FROM city
WHERE name LIKE '_ublin';

OTHER OPERATORS
Fetch names of cities that have a population between 500K
and 5M:
SELECT name
FROM city
WHERE population BETWEEN 500000 AND
5000000;

Fetch names of cities that don't miss a rating value:
SELECT name
FROM city
WHERE rating IS NOT NULL;

Fetch names of cities that are in countries with IDs 1, 4, 7, or
8:
SELECT name
FROM city
WHERE country_id IN (1, 4, 7, 8);

QUERYING MULTIPLE TABLES
INNER JOIN
JOIN (or explicitly INNER JOIN) returns rows that have
matching values in both tables.
SELECT city.name, country.name
FROM city
[INNER] JOIN country
 ON city.country_id = country.id;
CITY COUNTRY

id name country_id id name

1 Paris France

2 Berlin Germany

3 Warsaw 4 3 Iceland

LEFT JOIN
LEFT JOIN returns all rows from the left table with
corresponding rows from the right table. If there's no
matching row, NULLs are returned as values from the second
table.
SELECT city.name, country.name
FROM city
LEFT JOIN country
 ON city.country_id = country.id;
CITY COUNTRY

id name country_id id name

1 Paris France

2 Berlin Germany

3 Warsaw NULL

RIGHT JOIN
RIGHT JOIN returns all rows from the right table with
corresponding rows from the left table. If there's no matching
row, NULLs are returned as values from the left table.
SELECT city.name, country.name
FROM city
RIGHT JOIN country
 ON city.country_id = country.id;
CITY COUNTRY

id name country_id id name

1 Paris France

2 Berlin Germany

NULL NULL Iceland

FULL JOIN
FULL JOIN (or explicitly FULL OUTER JOIN) returns all
rows from both tables – if there's no matching row in the
second table, NULLs are returned.
SELECT city.name, country.name
FROM city
FULL [OUTER] JOIN country
 ON city.country_id = country.id;
CITY COUNTRY

id name country_id id name

1 Paris France

2 Berlin Germany

3 Warsaw NULL

NULL NULL Iceland

CROSS JOIN
CROSS JOIN returns all possible combinations of rows from
both tables. There are two syntaxes available.
SELECT city.name, country.name
FROM city
CROSS JOIN country;

SELECT city.name, country.name
FROM city, country;
CITY COUNTRY

id name country_id id name

1 Paris France

1 Paris Germany

2 Berlin France

2 Berlin Germany

NATURAL JOIN
NATURAL JOIN will join tables by all columns with the
same name.
SELECT city.name, country.name
FROM city
NATURAL JOIN country;
CITY COUNTRY

country_id id name name id

6

7 Vatican City Vatican City

5

10 11 Monaco Monaco 10

NATURAL JOIN used these columns to match rows:
city.id, city.name, country.id, country.name.
NATURAL JOIN is very rarely used in practice.

AGGREGATION AND GROUPING
GROUP BY groups together rows that have the same values in specified columns. It
computes summaries (aggregates) for each unique combination of values.

CITY

id name country_id

1 Paris 1

101 Marseille 1

102 Lyon 1

2 Berlin 2

103 Hamburg 2

104 Munich 2

3 Warsaw 4

105 Cracow 4

CITY

country_id count

1 3

2 3

4 2

AGGREGATE FUNCTIONS
avg(expr) − average value for rows within the group
count(expr) − count of values for rows within the group
max(expr) − maximum value within the group
min(expr) − minimum value within the group
sum(expr) − sum of values within the group

EXAMPLE QUERIES
Find out the number of cities:
SELECT COUNT(*)
FROM city;

Find out the number of cities with non-null ratings:
SELECT COUNT(rating)
FROM city;

Find out the number of distinctive country values:
SELECT COUNT(DISTINCT country_id)
FROM city;

Find out the smallest and the greatest country populations:
SELECT MIN(population), MAX(population)
FROM country;

Find out the total population of cities in respective countries:
SELECT country_id, SUM(population)
FROM city
GROUP BY country_id;

Find out the average rating for cities in respective countries if the average is above
3.0:
SELECT country_id, AVG(rating)
FROM city
GROUP BY country_id
HAVING AVG(rating) > 3.0;

SUBQUERIES
A subquery is a query that is nested inside another query, or inside another
subquery. There are different types of subqueries.

SINGLE VALUE
The simplest subquery returns exactly one column and exactly one row. It can be
used with comparison operators =, <, <=, >, or >=.
This query finds cities with the same rating as Paris:
SELECT name
FROM city
WHERE rating = (
 SELECT rating
 FROM city
 WHERE name = 'Paris'
);

MULTIPLE VALUES
A subquery can also return multiple columns or multiple rows. Such subqueries can
be used with operators IN, EXISTS, ALL, or ANY.
This query finds cities in countries that have a population above 20M:
SELECT name
FROM city
WHERE country_id IN (
 SELECT country_id
 FROM country
 WHERE population > 20000000
);

CORRELATED
A correlated subquery refers to the tables introduced in the outer query. A
correlated subquery depends on the outer query. It cannot be run independently
from the outer query.
This query finds cities with a population greater than the average population in the
country:
SELECT *
FROM city main_city
WHERE population > (
 SELECT AVG(population)
 FROM city average_city
 WHERE average_city.country_id = main_city.country_id
);

This query finds countries that have at least one city:
SELECT name
FROM country
WHERE EXISTS (
 SELECT *
 FROM city
 WHERE country_id = country.id
);

SET OPERATIONS
Set operations are used to combine the results of two or more queries into a single
result. The combined queries must return the same number of columns and
compatible data types. The names of the corresponding columns can be different.

CYCLING

id name country

1 YK DE

2 ZG DE

3 WT PL

...

SKATING

id name country

1 YK DE

2 DF DE

3 AK PL

...

UNION
UNION combines the results of two result sets and removes duplicates. UNION
ALL doesn't remove duplicate rows.

This query displays German cyclists together with German skaters:
SELECT name
FROM cycling
WHERE country = 'DE'
UNION / UNION ALL
SELECT name
FROM skating
WHERE country = 'DE';

INTERSECT
INTERSECT returns only rows that appear in both result sets.

This query displays German cyclists who are also German skaters at the same time:
SELECT name
FROM cycling
WHERE country = 'DE'
INTERSECT
SELECT name
FROM skating
WHERE country = 'DE';

EXCEPT
EXCEPT returns only the rows that appear in the first result set but do not appear in
the second result set.

This query displays German cyclists unless they are also German skaters at the
same time:
SELECT name
FROM cycling
WHERE country = 'DE'
EXCEPT / MINUS
SELECT name
FROM skating
WHERE country = 'DE';

Try out the interactive SQL Basics course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

1 1

2 2

1 1

2 2

4 NULL

1 1

2 2

NULL 3

1 1

2 2

4 NULL

NULL 3

1 1

1 2

2 1

2 2

6 San Marino San Marino 6

7 7

9 Greece Greece 9

https://learnsql.com/course/sql-queries/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sqlbasics_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sqlbasics_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sqlbasics_a4
https://vertabelo.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sqlbasics_a4

