
SQL for Data Analysis Cheat Sheet
SQL
SQL, or Structured Query Language, is a language for talking to
databases. It lets you select specific data and build complex
reports. Today, SQL is a universal language of data, used in
practically all technologies that process data.

SELECT
Fetch the id and name columns from the product table:
SELECT id, name
FROM product;

Concatenate the name and the description to fetch the full
description of the products:
SELECT name || ' - ' || description
FROM product;

Fetch names of products with prices above 15:
SELECT name
FROM product
WHERE price > 15;

Fetch names of products with prices between 50 and 150:
SELECT name
FROM product
WHERE price BETWEEN 50 AND 150;

Fetch names of products that are not watches:
SELECT name
FROM product
WHERE name != 'watch';

Fetch names of products that start with a 'P' or end with an
's':
SELECT name
FROM product
WHERE name LIKE 'P%' OR name LIKE '%s';

Fetch names of products that start with any letter followed by
'rain' (like 'train' or 'grain'):
SELECT name
FROM product
WHERE name LIKE '_rain';

Fetch names of products with non-null prices:
SELECT name
FROM product
WHERE price IS NOT NULL;

GROUP BY
PRODUCT

name category

Knife Kitchen

Pot Kitchen

Mixer Kitchen

Jeans Clothing

Sneakers Clothing

Leggings Clothing

Smart TV Electronics

Laptop Electronics

category count

Kitchen 3

Clothing 3

Electronics 2

AGGREGATE FUNCTIONS
Count the number of products:
SELECT COUNT(*)
FROM product;

Count the number of products with non-null prices:
SELECT COUNT(price)
FROM product;

Count the number of unique category values:
SELECT COUNT(DISTINCT category)
FROM product;

Get the lowest and the highest product price:
SELECT MIN(price), MAX(price)
FROM product;

Find the total price of products for each category:
SELECT category, SUM(price)
FROM product
GROUP BY category;

Find the average price of products for each category whose
average is above 3.0:
SELECT category, AVG(price)
FROM product
GROUP BY category
HAVING AVG(price) > 3.0;

ORDER BY
Fetch product names sorted by the price column in the default
ASCending order:
SELECT name
FROM product
ORDER BY price [ASC];

Fetch product names sorted by the price column in
DESCending order:
SELECT name
FROM product
ORDER BY price DESC;

COMPUTATIONS
Use +, -, *, / to do basic math. To get the number of seconds in a
week:
SELECT 60 * 60 * 24 * 7;
-- result: 604800

ROUNDING NUMBERS
Round a number to its nearest integer:
SELECT ROUND(1234.56789);
-- result: 1235

Round a number to two decimal places:
SELECT ROUND(AVG(price), 2)
FROM product
WHERE category_id = 21;
-- result: 124.56

TROUBLESHOOTING
INTEGER DIVISION
In PostgreSQL and SQL Server, the / operator performs integer
division for integer arguments. If you do not see the number of
decimal places you expect, it is because you are dividing between
two integers. Cast one to decimal:
123 / 2 -- result: 61
CAST(123 AS decimal) / 2 -- result: 61.5

DIVISION BY 0
To avoid this error, make sure the denominator is not 0. You may
use the NULLIF() function to replace 0 with a NULL, which
results in a NULL for the entire expression:
count / NULLIF(count_all, 0)

JOIN
JOIN is used to fetch data from multiple tables. To get the names
of products purchased in each order, use:
SELECT
orders.order_date,
product.name AS product,
amount

FROM orders
JOIN product
 ON product.id = orders.product_id;

Learn more about JOINs in our interactive SQL JOINs course.

INSERT
To insert data into a table, use the INSERT command:
INSERT INTO category
VALUES
(1, 'Home and Kitchen'),
(2, 'Clothing and Apparel');

You may specify the columns to which the data is added. The
remaining columns are filled with predefined default values or
NULLs.
INSERT INTO category (name)
VALUES ('Electronics');

UPDATE
To update the data in a table, use the UPDATE command:
UPDATE category
SET
is_active = true,
name = 'Office'

WHERE name = 'Ofice';

DELETE
To delete data from a table, use the DELETE command:
DELETE FROM category
WHERE name IS NULL;

Check out our interactive course How to INSERT, UPDATE, and
DELETE Data in SQL.

Learn the basics of SQL in our interactive SQL Basics course. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/course/joins?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/course/sql-insert-update-delete?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/tags/sql-basics/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://vertabelo.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4

SQL for Data Analysis Cheat Sheet
DATE AND TIME
There are 3 main time-related types: date, time, and
timestamp. Time is expressed using a 24-hour clock, and it can
be as vague as just hour and minutes (e.g., 15:30 – 3:30 p.m.) or
as precise as microseconds and time zone (as shown below):

2021-12-31 14:39:53.662522-05
date time

timestamp
YYYY-mm-dd HH:MM:SS.ssssss±TZ

14:39:53.662522-05 is almost 2:40 p.m. CDT (e.g., in
Chicago; in UTC it'd be 7:40 p.m.). The letters in the above
example represent:

In the date part:
YYYY – the 4-digit
year.
mm – the zero-padded
month (01—January
through 12—
December).
dd – the zero-padded
day.

In the time part:
HH – the zero-padded hour in a 24-
hour clock.
MM – the minutes.
SS – the seconds. Omissible.
ssssss – the smaller parts of a
second – they can be expressed
using 1 to 6 digits. Omissible.
±TZ – the timezone. It must start
with either + or -, and use two
digits relative to UTC. Omissible.

CURRENT DATE AND TIME
Find out what time it is:
SELECT CURRENT_TIME;

Get today's date:
SELECT CURRENT_DATE;
In SQL Server:
SELECT GETDATE();

Get the timestamp with the current date and time:
SELECT CURRENT_TIMESTAMP;

CREATING DATE AND TIME VALUES
To create a date, time, or timestamp, write the value as a string
and cast it to the proper type.
SELECT CAST('2021-12-31' AS date);
SELECT CAST('15:31' AS time);
SELECT CAST('2021-12-31 23:59:29+02'
 AS timestamp);
SELECT CAST('15:31.124769' AS time);

Be careful with the last example – it is interpreted as 15 minutes
31 seconds and 124769 microseconds! It is always a good idea to
write 00 for hours explicitly: '00:15:31.124769'.

SORTING CHRONOLOGICALLY
Using ORDER BY on date and time columns sorts rows
chronologically from the oldest to the most recent:
SELECT order_date, product, quantity
FROM sales
ORDER BY order_date;

order_date product quantity

2023-07-22 Laptop 2

2023-07-23 Mouse 3

2023-07-24 Sneakers 10

2023-07-24 Jeans 3

2023-07-25 Mixer 2

Use the DESCending order to sort from the most recent to the
oldest:
SELECT order_date, product, quantity
FROM sales
ORDER BY order_date DESC;

COMPARING DATE AND TIME
VALUES
You may use the comparison operators <, <=, >, >=, and = to
compare date and time values. Earlier dates are less than later
ones. For example, 2023-07-05 is "less" than 2023-08-05.

Find sales made in July 2023:
SELECT order_date, product_name, quantity
FROM sales
WHERE order_date >= '2023-07-01'
 AND order_date < '2023-08-01';

Find customers who registered in July 2023:
SELECT registration_timestamp, email
FROM customer
WHERE registration_timestamp >= '2023-07-01'
 AND registration_timestamp < '2023-08-01';

Note: Pay attention to the end date in the query. The upper
bound '2023-08-01' is not included in the range. The
timestamp '2023-08-01' is actually the timestamp '2023-
08-01 00:00:00.0'. The comparison operator < is used to
ensure the selection is made for all timestamps less than '2023-
08-01 00:00:00.0', that is, all timestamps in July 2023,
even those close to the midnight of August 1, 2023.

INTERVALS
An interval measures the difference between two points in time.
For example, the interval between 2023-07-04 and 2023-07-
06 is 2 days.

To define an interval in SQL, use this syntax:
INTERVAL '1' DAY

The syntax consists of three elements: the INTERVAL keyword, a
quoted value, and a time part keyword. You may use the following
time parts: YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

Adding intervals to date and time values
You may use + or - to add or subtract an interval to date or
timestamp values.

Subtract one year from 2023-07-05:
SELECT CAST('2023-07-05' AS TIMESTAMP)
 - INTERVAL '1' year;
-- result: 2022-07-05 00:00:00

Find customers who placed the first order within a month from
the registration date:
SELECT id
FROM customers
WHERE first_order_date >
 registration_date + INTERVAL '1' month;

Filtering events to those in the last 7 days
To find the deliveries scheduled for the last 7 days, use:
SELECT delivery_date, address
FROM sales
WHERE delivery_date <= CURRENT_DATE
 AND delivery_date >= CURRENT_DATE
 - INTERVAL '7' DAY;

Note: In SQL Server, intervals are not implemented – use the
DATEADD() and DATEDIFF() functions.

Filtering events to those in the last 7 days
in SQL Server
To find the sales made within the last 7 days, use:
SELECT delivery_date, address
FROM sales
WHERE delivery_date <= GETDATE()
 AND delivery_date >=
 DATEADD(DAY, -7, GETDATE());

EXTRACTING PARTS OF DATES
The standard SQL syntax to get a part of a date is
SELECT EXTRACT(YEAR FROM order_date)
FROM sales;

You may extract the following fields:
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND.

The standard syntax does not work In SQL Server.
Use the DATEPART(part, date) function instead.
SELECT DATEPART(YEAR, order_date)
FROM sales;

GROUPING BY YEAR AND MONTH
Find the count of sales by month:
SELECT
EXTRACT(YEAR FROM order_date) AS year,
EXTRACT(MONTH FROM order_date) AS month,
COUNT(*) AS count

FROM sales
GROUP BY
year,
month

ORDER BY
year
month;

year month count

2022 8 51

2022 9 58

2022 10 62

2022 11 76

2022 12 85

2023 1 71

2023 2 69

Note that you must group by both the year and the month.
EXTRACT(MONTH FROM order_date) only extracts the
month number (1, 2, ..., 12). To distinguish between months from
different years, you must also group by year.

More about working with date and time values in our
interactive Standard SQL Functions course.

LearnSQL.com – Practical SQL Courses for Teams and Individuals LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/course/standard-sql-functions?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
http://learnsql.com/course-explorer?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://vertabelo.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4

SQL for Data Analysis Cheat Sheet
CASE WHEN
CASE WHEN lets you pass conditions (as in the WHERE clause),
evaluates them in order, then returns the value for the first
condition met.

SELECT
name,
CASE
 WHEN price > 150 THEN 'Premium'
 WHEN price > 100 THEN 'Mid-range'
 ELSE 'Standard'
END AS price_category

FROM product;

Here, all products with prices above 150 get the Premium label,
those with prices above 100 (and below 150) get the Mid-range
label, and the rest receives the Standard label.

CASE WHEN and GROUP BY
You may combine CASE WHEN and GROUP BY to compute
object statistics in the categories you define.
SELECT
CASE
 WHEN price > 150 THEN 'Premium'
 WHEN price > 100 THEN 'Mid-range'
 ELSE 'Standard'
END AS price_category,
COUNT(*) AS products

FROM product
GROUP BY price_category;

Count the number of large orders for each customer using CASE
WHEN and SUM():
SELECT
 customer_id,
 SUM(
 CASE WHEN quantity > 10
 THEN 1 ELSE 0 END
) AS large_orders
FROM sales
GROUP BY customer_id;

... or using CASE WHEN and COUNT():
SELECT
 customer_id,
 COUNT(
 CASE WHEN quantity > 10
 THEN order_id END
) AS large_orders
FROM sales
GROUP BY customer_id;

GROUP BY EXTENSIONS
GROUPING SETS
GROUPING SETS lets you specify multiple sets of columns to
group by in one query.
SELECT region, product, COUNT(order_id)
FROM sales
GROUP BY
 GROUPING SETS ((region, product), ());

region product count

USA Laptop 10

USA Mouse 5

UK Laptop 6

NULL NULL 21

CUBE
CUBE generates groupings for all possible subsets of the GROUP
BY columns.
SELECT region, product, COUNT(order_id)
FROM sales
GROUP BY CUBE (region, product);

region product count

USA Laptop 10

USA Mouse 5

UK Laptop 6

USA NULL 15

UK NULL 6

NULL Laptop 16

NULL Mouse 5

NULL NULL 21

ROLLUP
ROLLUP adds new levels of grouping for subtotals and grand
totals.
SELECT region, product, COUNT(order_id)
FROM sales
GROUP BY ROLLUP (region, product);

region product count

USA Laptop 10

USA Mouse 5

UK Laptop 6

USA NULL 15

UK NULL 6

NULL NULL 21

COALESCE
COALESCE replaces the first NULL argument with a given value.
It is o�en used to display labels with GROUP BY extensions.
SELECT region,
COALESCE(product, 'All'),
COUNT(order_id)

FROM sales
GROUP BY ROLLUP (region, product);

region product count

USA Laptop 10

USA Mouse 5

USA All 15

UK Laptop 6

UK All 6

All All 21

COMMON TABLE EXPRESSIONS
A common table expression (CTE) is a named temporary result set
that can be referenced within a larger query. They are especially
useful for complex aggregations and for breaking down large
queries into more manageable parts.
WITH total_product_sales AS (
SELECT product, SUM(profit) AS total_profit
FROM sales
GROUP BY product

)

SELECT AVG(total_profit)
FROM total_product_sales;

Check out our hands-on courses on Common Table
Expressions and GROUP BY Extensions.

WINDOW FUNCTIONS
Window functions compute their results based on a sliding
window frame, a set of rows related to the current row. Unlike
aggregate functions, window functions do not collapse rows.
COMPUTING THE PERCENT OF TOTAL WITHIN A GROUP
SELECT product, brand, profit,
 (100.0 * profit /
 SUM(profit) OVER(PARTITION BY brand)
) AS perc
FROM sales;

product brand profit perc

Knife Culina 1000 25

Pot Culina 3000 75

Doll Toyze 2000 40

Car Toyze 3000 60

RANKING
Rank products by price:
SELECT RANK() OVER(ORDER BY price), name
FROM product;

RANKING FUNCTIONS
RANK – gives the same rank for tied values, leaves gaps.
DENSE_RANK – gives the same rank for tied values without gaps.
ROW_NUMBER – gives consecutive numbers without gaps.

name rank dense_rank row_number

Jeans 1 1 1

Leggings 2 2 2

Leggings 2 2 3

Sneakers 4 3 4

Sneakers 4 3 5

Sneakers 4 3 6

T-Shirt 7 4 7

RUNNING TOTAL
A running total is the cumulative sum of a given value and all
preceding values in a column.
SELECT date, amount,
 SUM(amount) OVER(ORDER BY date)
 AS running_total
FROM sales;

MOVING AVERAGE
A moving average (a.k.a. rolling average, running average) is a
technique for analyzing trends in time series data. It is the
average of the current value and a specified number of preceding
values.
SELECT date, price,
 AVG(price) OVER(
 ORDER BY date
 ROWS BETWEEN 2 PRECEDING
 AND CURRENT ROW
) AS moving_averge
FROM stock_prices;

DIFFERENCE BETWEEN TWO ROWS (DELTA)
SELECT year, revenue,
 LAG(revenue) OVER(ORDER BY year)
 AS revenue_prev_year,
 revenue -
 LAG(revenue) OVER(ORDER BY year)
 AS yoy_difference
FROM yearly_metrics;

Learn about SQL window functions in our interactive Window
Functions course.

Learn more in our interactive Creating Basic SQL Reports course LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

GROUP BY (region, product)

GROUP BY () – all rows

GROUP BY region, product

GROUP BY region

GROUP BY product

GROUP BY () – all rows

GROUP BY region, product

GROUP BY region

GROUP BY () – all rows

https://learnsql.com/course/common-table-expressions?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/course/sql-group-by-extensions?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/course/window-functions?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/course/sql-basic-reporting?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4
https://vertabelo.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=sql4data_a4

