
PostgreSQL Cheat Sheet
PostgreSQL is an open-source relational database
management system. Known for its robust features,
extensibility, and adherence to standards, it is a powerful and
widely used database solution for storing, managing, and
processing data across diverse environments.

Check out the official PostgreSQL site here:
https://www.postgresql.org/

CONNECTING TO A POSTGRESQL
SERVER
Connect to a PostgreSQL server using the PostgreSQL
command-line client (psql) and a username. It will prompt
you for the password:
psql -U username

To connect to a specific database on a PostgreSQL server with
a username:
psql -U username -h host_name -d
database_name

To exit the client:
\q

For a full list of commands:
\h

For a list of psql commands:
\?

To export data using the pg_dump tool:
pg_dump -U username -h host_name
 -d database_name > data_backup.sql

CREATING AND DISPLAYING
DATABASES
To create a database:
CREATE DATABASE zoo;

To delete a specific database:
DROP DATABASE zoo;

To list all the databases on a server:
\l;

To connect to a specific database:
\c zoo;

To list all tables in a database:
\dt;

To get information about a specific table:
\d animal;
It outputs column names, data types, default values, and
more about the table.

CREATING TABLES
To create a table:
CREATE TABLE habitat (
 id INT,
 name VARCHAR(64)
);

To increment the ID automatically with each new record, use
the SERIAL data type:
CREATE TABLE habitat (
 id INT SERIAL PRIMARY KEY,
 name VARCHAR(64)
);

To create a table with a foreign key:
CREATE TABLE animal (
 id SERIAL PRIMARY KEY,
 name VARCHAR(64),
 species VARCHAR(64),
 age INT,
 habitat_id INT,
 FOREIGN KEY (habitat_id)
 REFERENCES habitat(id)
);

MODIFYING TABLES
Use the ALTER TABLE to modify a table structure.

To change a table name:
ALTER TABLE animal RENAME TO pet;

To add a column to the table:
ALTER TABLE animal
ADD COLUMN name VARCHAR(64);

To change a column name:
ALTER TABLE animal
RENAME COLUMN id TO identifier;

To change a column data type:
ALTER TABLE animal
ALTER COLUMN name TYPE VARCHAR(128);

To delete a column:
ALTER TABLE animal
DROP COLUMN name;

To delete a table:
DROP TABLE animal;

QUERYING DATA
To select data from a table, use SELECT.
An example of a single-table query:
SELECT species, AVG(age) AS average_age
FROM animal
WHERE id != 3
GROUP BY species
HAVING AVG(age) > 3
ORDER BY AVG(age) DESC;

An example of a multiple-table query:
SELECT city.name, country.name
FROM city
[INNER | LEFT | RIGHT | FULL] JOIN country
 ON city.country_id = country.id;

AGGREGATION AND GROUPING
AVG(expr) − average value of expr for the group.
COUNT(expr) − count of expr values within the group.
MAX(expr) − maximum value of expr values within the
group.
MIN(expr) − minimum value of expr values within the
group.
SUM(expr) − sum of expr values within the group.

To count the rows in the table:
SELECT COUNT(*)
FROM animal;

To count the non-NULL values in a column:
SELECT COUNT(name)
FROM animal;

To count unique values in a column:
SELECT COUNT(DISTINCT name)
FROM animal;

GROUP BY
To count the animals by species:
SELECT species, COUNT(id)
FROM animal
GROUP BY species;

To get the average, minimum, and maximum ages by habitat:
SELECT habitat_id, AVG(age),
 MIN(age), MAX(age)

FROM animal
GROUP BY habitat_id;

INSERTING DATA
To insert data into a table, use INSERT:
INSERT INTO habitat VALUES
(1, 'River'),
(2, 'Forest');

You may specify the columns in which the data is added. The
remaining columns are filled with default values or NULLs.
INSERT INTO habitat (name)
VALUES ('Savanna');

UPDATING DATA
To update the data in a table, use UPDATE:
UPDATE animal
SET
 species = 'Duck',
 name = 'Quack'
WHERE id = 2;

DELETING DATA
To delete data from a table, use DELETE:
DELETE FROM animal
WHERE id = 1;
This deletes all rows satisfying the WHERE condition.

To delete all data from a table, use TRUNCATE TABLE:
TRUNCATE TABLE animal;

COPYING DATA
To import data from a CSV file into a table:
\copy animal FROM 'animal.csv' CSV HEADER

To export data from a query to a CSV file:
\copy (SELECT * FROM animal)
 TO 'animal.csv' CSV HEADER

CASTING
To change the type of a value, use the :: operator:
SELECT 25.5::INTEGER; -- result: 26

You may also use CAST(). This is useful when the name of
the type contains spaces, e.g., double precision:
SELECT CAST(column AS DOUBLE PRECISION);

Check out the SQL from A to Z in PostgreSQL learning track or explore all courses at LearnSQL.com. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://www.postgresql.org/
https://learnsql.com/track/sql-from-a-to-z-in-postgresql?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/
https://vertabelo.com/

PostgreSQL Cheat Sheet
TEXT FUNCTIONS
FILTERING THE OUTPUT
To fetch the city names that are not Berlin:
SELECT name
FROM city
WHERE name != 'Berlin';

TEXT OPERATORS
To fetch the city names that start with a 'P':
SELECT name
FROM city
WHERE name LIKE 'P%';
To fetch the city names that start with any letter followed by
'ublin' (like Dublin in Ireland or Lublin in Poland):
SELECT name
FROM city
WHERE name LIKE '_ublin';

CONCATENATION
To concatenate two strings, use the || operator or the
CONCAT() function:
SELECT 'Hi ' || 'there!';
-- result: Hi there!
SELECT CONCAT('Hello ', 'there!');
-- result: Hello there!
Note that with ||, the result is NULL if any of the strings is
NULL:
SELECT 'Great ' || 'day' || NULL;
-- result: NULL
In contrast, CONCAT() ignores NULL:
SELECT CONCAT('Good ', 'day', NULL);
-- result: Good day

OTHER USEFUL TEXT FUNCTIONS
To get the count of characters in a string:
SELECT LENGTH('LearnSQL.com');
-- result: 12
To convert all letters to lowercase:
SELECT LOWER('LEARNSQL.COM');
-- result: learnsql.com
To convert all letters to uppercase:
SELECT UPPER('LearnSQL.com');
-- result: LEARNSQL.COM
To capitalize the first letter of each word in a string, use
INITCAP():
SELECT INITCAP('hello world');
-- result: 'Hello World'
To get a part of a string:
SELECT SUBSTRING('LearnSQL.com', 9);
-- result: .com
SELECT SUBSTRING('LearnSQL.com', 1, 5);
-- result: Learn
To replace a part of a string:
SELECT REPLACE('LearnSQL.com', 'SQL',
'Python'); -- result: LearnPython.com

NUMERIC FUNCTIONS
Use +, -, *, / for basic math.

To get the number of seconds in a week:
SELECT 60 * 60 * 24 * 7; -- result: 604800

In PostgreSQL, the division operator / performs an integer
division on integer arguments. For example:
SELECT 25 / 4; -- result 6
Avoid integer division by including at least one non-integer
argument:
SELECT 25::numeric / 4; -- result 6.25
SELECT 25.0 / 4; -- result 6.25

To get the remainder of a division:
SELECT MOD(13, 2); -- result: 1
SELECT 13 % 2; -- result: 1

To round a number to its nearest integer:
SELECT ROUND(1234.56789); -- result: 1235

To round a number to three decimal places (NUMERIC
arguments only):
SELECT ROUND(1234.56789, 3);
-- result: 1234.568

To get the absolute value of a number:
SELECT ABS(-12); -- result: 12

To get the square root of a number:
SELECT SQRT(9); -- result: 3

USEFUL NULL FUNCTIONS
To fetch the names of the cities whose rating values are not
missing:
SELECT name
FROM city
WHERE rating IS NOT NULL;

COALESCE(x, y, ...)
To replace NULL in a query with something meaningful:
SELECT domain,
 COALESCE(domain, 'domain missing')
FROM contacts;
COALESCE() takes any number of arguments and returns
the value of the first non-NULL argument.

NULLIF(x, y)
To save yourself from division by 0 errors:
SELECT last_month, this_month,
 this_month * 100.0
 / NULLIF(last_month, 0)
 AS better_by_percent
FROM video_views;
NULLIF(x, y) returns NULL if x equals y; else it returns
the value of x.

DATE AND TIME
There are 5 main time-related types in PostgreSQL:

DATE – a date with a resolution of one day; stores the year,
month, and day in the YYYY-MM-DD format.

TIME – a time of day with a resolution of one microsecond;
stores the hours, minutes, seconds, and fractional seconds in
the HH:MM:SS.SSSSSS format.

TIMESTAMP WITH TIME ZONE – a timestamp with the
time zone; stores the date and the time along with the
corresponding time zone information. The range is from
'4713-11-24 00:00:00' BC to '294276-12-31
23:59:59' AD.

TIMESTAMP – a timestamp without the time zone; stores the
date and the time. PostgreSQL handles TIMESTAMP values
automatically with time zone conversion.

INTERVAL – a duration of time, such as 3 days, 4 hours, and
30 minutes.

WHAT TIME IS IT?
To answer this question, use:

CURRENT_TIME – to get the current time.
CURRENT_DATE – to get the current date.
CURRENT_TIMESTAMP – to get the current timestamp
with both of the above.

CREATING DATE/TIME VALUES
To create a date, time, or datetime value, write it as a string
and cast it to the desired type.
SELECT '2023-12-31'::date;
SELECT '15:31'::time;
SELECT '2023-12-31 23:59:29'::timestamp;
You may also use CAST() or DATE().

You may skip casting in simple conditions. The database
knows what you mean.
SELECT airline, flight_number,
departure_time
FROM airport_schedule
WHERE departure_time < '12:00';

INTERVALS
An interval is the duration between two points in time.
To define an interval: INTERVAL '3 days';

This syntax consists of the INTERVAL keyword, a value, and
a time part keyword (YEAR, QUARTER, MONTH, WEEK, DAY,
HOUR, MINUTE, SECOND, MICROSECOND).
You may combine different INTERVALs using the + or -
operator:
INTERVAL '1 year' + INTERVAL '3 months'

EXTRACTING PARTS OF DATES
To extract a part of a date, use EXTRACT():
SELECT
 EXTRACT(MONTH FROM '2023-12-31'::DATE);
-- result: 12

You may also use DATE_PART(). It extracts specific
components from a date or timestamp.
SELECT DATE_PART('day', '2023-12-
31'::DATE); -- result: 31
Common arguments include 'day', 'month', 'year',
'quarter', 'hour', 'minute', and 'second', among
others.

DATE ARITHMETICS
To add or subtract an INTERVAL from a date, time, or
timestamp:
SELECT '2023-10-31'::DATE
 + INTERVAL '2 months';
-- result: '2023-12-31'
SELECT '2024-04-05'::DATE
 + INTERVAL '-3 days';
-- result: '2024-04-02'
SELECT '2023-06-10 07:55:00'::TIMESTAMP
 + INTERVAL '2 months';
-- result: '2023-08-10 07:55:00'
SELECT '2023-02-12 10:20:24'::TIMESTAMP
 + INTERVAL '-12:43:02';
-- result: '2023-02-11 21:37:22'

To find the difference between two dates in days:
SELECT '2024-01-01'::date
 - '2023-01-02'::date AS date_diff;
-- result: 364

DATE_TRUNC() in PostgreSQL truncates date or timestamp
values to the specified time units.
SELECT DATE_TRUNC('hour',
 '2023-01-15 14:38:00'::TIMESTAMP);
-- result: '2023-01-15 14:00'
SELECT DATE_TRUNC('month',
 '2023-12-30'::DATE);
-- result: '2023-12-01'

DATE_TRUNC() is often used to group by year, month,
week, etc.
SELECT
 DATE_TRUNC('month', birth_date) AS
month,
 COUNT(*)
FROM animal
GROUP BY DATE_TRUNC('month', birth_date)
ORDER BY DATE_TRUNC('month', birth_date);

Check out the SQL from A to Z in PostgreSQL learning track or explore all courses at LearnSQL.com. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/track/sql-from-a-to-z-in-postgresql?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/?utm_source=cheatsheet&utm_medium=pdf&utm_campaign=postgresql_a4
https://learnsql.com/
https://vertabelo.com/

